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China is currently the world’s largest energy consumer. The rapid growth in energy consumption has resulted in
many problems in this country. The Chinese government has realized the necessity of improving energy efficiency
and reducing energy consumption. As a useful decision-support tool, simulation models can be used to examine
the potential impacts of different plans on urban development and energy consumption. This study presents a
model that integrates support vector regression (SVR) and cellular automata (CA) to simulate urban forms and
to estimate the corresponding energy consumption in one of the most developed regions in China, the Pearl
River Delta (PRD). SVR is used to predict energy consumption and to project future urban size. The logistic
CA model simulates different urban forms to evaluate their effects on energy consumption. In this study, we
simulated four scenarios to assess the impacts of different development strategies on urban forms and the related
energy consumption. For each scenario, we used the model to predict land demand and energy consumption. The
result indicates that land demand is more sensitive to changes of economic structure than is energy consumption.
The comparison of different simulated scenarios suggests that promoting low-energy-consuming industries is the
most effective strategy to balance economic development and energy and land consumption. Key Words: cellular
automata, energy consumption, support vector regression, urban forms.
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Actualmente China es el más grande consumidor de energı́a del mundo. El rápido crecimiento en consumo
de energı́a ha dado lugar a muchos problemas en este paı́s. El gobierno chino se ha percatado de la necesidad
de mejorar la eficiencia energética y reducir el consumo de energı́a. Como útil herramienta en la que apoyar
decisiones sobre el particular, se pueden utilizar modelos de simulación para examinar los impactos potenciales
que puedan derivarse de diferentes planes sobre desarrollo urbano y consumo de energı́a. Este estudio introduce
un modelo que integra la regresión de vectores de sostén (SVR) y el autómata celular (CA) para simular formas
urbanas y calcular el correspondiente consumo de energı́a en una de las regiones más desarrolladas de China,
el Delta del Rı́o Perla (DRP). La regresión SVR se utiliza para para pronosticar el consumo de energı́a y para
proyectar el tamaño urbano futuro. El modelo logı́stico CA simula diferentes formas urbanas para evaluar sus
efectos sobre el consumo de energı́a. En este estudio simulamos cuatro escenarios para estimar los impactos de
diferentes estrategias del desarrollo de formas urbanas y el consumo energético relacionado. Para cada escenario
utilizamos el modelo para pronosticar la demanda de tierra y de consumo de energı́a. El resultado indica que
la demanda de tierra es más sensible a los cambios de la estructura económica que el consumo de energı́a. La
comparación de los diferentes escenarios simulados sugiere que promover industrias de bajo consumo energético
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es la estrategia más efectiva para equilibrar el desarrollo económico con los consumos de energı́a y tierra. Palabras
clave: autómata celular, consumo de energı́a, regresión de vectores de sostén, formas urbanas.

Just about ten years ago, China’s energy consump-
tion was half that of the United States. It took
only a few years for China to catch up and became

the world’s largest energy user (Zellner et al. 2008).
This rapid growth of energy consumption led to many
environmental and social problems. For instance, the
intensive and inefficient use of coal gave rise to serious
environmental problems, such as acid rain, air pollu-
tion (Fang, Chan, and Yao 2009), and increased carbon
emissions (Dhakal 2009). In addition, the insufficient
domestic energy supply has forced China to rely on fuel
imports, which have raised concerns about energy secu-
rity (Crompton and Wu 2005). Most of China’s energy
is consumed by highly urbanized areas. According to
Dhakal (2009), urban use accounted for up to 84 per-
cent of China’s energy consumption in year 2006, and
its thirty-five largest cities, which share 18 percent of
the country’s population, contributed 40 percent of the
total energy use.

Rapid economic growth and urbanization have stim-
ulated the energy consumption of China (Dhakal
2009). Economic growth can directly increase en-
ergy demand, especially because the country’s economy
largely relies on industries with relatively low energy
efficiency (Fang, Chan, and Yao 2009). In addition, the
fast urbanization has given rise to increases in passen-
ger and freight transportation demands. This has signif-
icant impacts on energy consumption and air pollution
(Yang et al. 2011). Population growth is another driver
of increased energy consumption. Energy demand rose
partly due to the needs of the expanding population
for daily living, commuting, and many other activities.
Additionally, the growth of personal wealth encourages
people to change to more energy-intensive lifestyles,
such as the ownership of automobiles (Dieleman, Dijst,
and Burghouwt 2002).

Because over 70 percent of China’s total energy
is used for industrial production (Energy Information
Association 2009), China’s 12th Five-Year Plan urges
improved energy efficiency and reduced energy con-
sumption resulting from changes in economic struc-
ture (State Council of the People’s Republic of China
2011). In this context, we selected one of the most
developed regions in China, the Pearl River Delta
(PRD), as the study area in which to explore the
potential effects of the change in economic struc-
ture on urban growth and energy consumption. As an
emerging megalopolis, the PRD is a major economic

region and manufacturing base of the world. The early
development in this region was mainly grounded on
foreign investments and low labor and land costs. The
processing technologies of manufacturing, featuring low
energy efficiency, were dominant in the region (Fang,
Chan, and Yao 2009) and brought about many environ-
mental problems. For example, the ambient concentra-
tions of SO2 and NO2 in the PRD have been higher
than those in other parts of the province (Shao et al.
2006). The provincial government has been consider-
ing implementation of long-term measures to reduce
energy consumption and improve the environment, in-
cluding adjusting the economic structure and upgrad-
ing the processing technologies and equipment (Fang,
Chan, and Yao 2009).

In addition, the control of urban form should be
considered as a means to reduce energy consumption.
Many studies have revealed that urban form plays a cru-
cial role in urban energy consumption (Anderson 1996;
Camagni, Gibelli, and Rigamonti 2002; Holden and
Norland 2005; Y. Chen et al. 2011). Urban form refers
to the spatial configuration of urban land use within
a metropolitan area. The relationship between urban
form and energy consumption can be complex. Some
researchers believe that compact development can ef-
fectively reduce energy consumption (Jenks and Burgess
2000). The main idea of compact development is to pro-
mote high-density development with mixed land use
types that favor the efficient use of facilities, the reduc-
tion of travel, and the development of public transit,
hence achieving low energy consumption (Holden and
Norland 2005). With regard to a dispersed urban de-
velopment, it cannot support public transit because of
the scattered demand and destinations, so dependence
on automobiles increases due to both the door-to-door
convenience and the declining costs of car ownership
(Camagni, Gibelli, and Rigamonti 2002).

The built environment can affect households’ trav-
eling behaviors, which are related to energy consump-
tion. In North America, residents prefer public transit
or walking in high-density employment centers, as these
areas usually have concentrated transit hubs (C. Chen,
Gong, and Paaswell 2008). Residents were also less
likely to own vehicles and tended to used transit more in
high-density residential neighborhoods due to the traf-
fic congestion and limited parking (Badoe and Miller
2000; Ewing and Cervero 2001; National Academy of
Sciences of the United States 2009). In China, land and
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housing reforms have broken the workplace–residence
tie in the prereform urbanized areas since the 1980s,
resulting in increasing spatial separation between
workplace and residence. Highways were then inten-
sively constructed by local governments to improve
accessibility, and automobile use was encouraged (Yang
and Gakenheimer 2007). Such rapid motorization,
along with the lengthened trips, generated serious traf-
fic problems in Chinese cities. Fortunately, there is ev-
idence showing that residents tend to use transit, walk,
or bicycle if public transit services are available or if the
environments are pedestrian and cycling friendly (Pan,
Shen, and Zhang 2009).

To identify the relationships between urban form
and energy consumption, one needs quantitative
measurements of urban form. Population density is a
frequently used measurement (Mindali, Raveh, and
Salomon 2004), but it cannot reflect the spatial charac-
teristics of urban form. In this study, we used landscape
metrics to measure urban form, as they can (1) improve
the representation of heterogeneous urban landscapes,
(2) bridge the gap between urban land use patterns
and governing processes, and (3) facilitate the analysis
of impacts of urban development on the surrounding
environment (Herold, Couclelis, and Clarke 2005).
A recent study demonstrated that the fragmentation
and irregularity of urban land use patterns, measured
by landscape metrics, were positively correlated with
urban energy consumption (Y. Chen et al. 2011).

In this study, we propose a model that integrates
support vector regression (SVR) and cellular automata
(CA) to simulate the urban forms and to estimate
the corresponding energy consumption levels. The
simulation should be useful for exploring the impacts of
different development strategies on urban growth and
energy consumption. CA are a bottom-up approach
(Wolfram 1984) that can generate global urban land
use patterns through modeling local interactions

between geographical features and their immediate
neighborhoods (environments). Previous studies
demonstrated the strength of CA in simulating realistic
urban growth (Clarke and Gaydos 1998; Silva and
Clarke 2005) and in solving urban planning problems
when coupled with spatial optimization models (Li,
Chen, et al. 2011; Li, Shi, et al. 2011).

The scenario simulations of urban forms will obtain
various spatial variables in terms of landscape metrics.
Based on these metrics, we adopted SVR (Smola and
Schölkopf 2004) to predict the corresponding energy
consumption for each scenario. SVR is a new technique
of classification and prediction and has been used to
handle complex relationships in many fields (Oliveira
2006; Hua et al. 2007). The method employs the struc-
tural risk minimization (SRM) principle to minimize
the upper bound of the generalization error instead of
the error from the training set. Compared with con-
ventional methods, SVR improves prediction accuracy
through avoiding overfitting. Additionally, SVR can
overcome the difficulties resulting from the normality
assumption of the distribution process and the correla-
tion among predictors (Gani, Taleb, and Limam 2010).

Method

In this study, an SVR-based model of energy con-
sumption is integrated with a CA-based model of urban
growth for two reasons. First, the impact of urban growth
on energy consumption is immediate. Energy demand
is expected to increase as the urban economy grows, if
energy efficiency has not improved significantly. Sec-
ond, the change in economic structure is likely to in-
fluence urban growth, as well as energy consumption.
The overall energy demand varies among different eco-
nomic structures because energy use intensity is diverse
from one type of industry to another. Meanwhile, the

Figure 1. An integrated model to
evaluate the impacts of different de-
velopment strategies on urban growth
and energy consumption.
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1570 Chen et al.

urbanization process will deviate from its regular path
as a result of a changed economic structure.

Figure 1 illustrates the flow of the proposed model.
In this model, CA was used to simulate urban forms
with the urban size constraint, which was produced by
an SVR model based on a set of socioeconomic vari-
ables. After the simulation, the landscape metrics were
then calculated to quantify the simulated urban forms.
Another SVR model was finally applied to the predic-
tion of energy consumption using both landscape met-
rics and other socioeconomic variables. Details of SVR
and CA are provided in the following sections.

Support Vector Regression

An important part of this coupling model is to use
SVR to predict urban size and energy consumption.
In SVR, the objective is to find a function f (x) = <

w, x > + b that best fits the training data set, where w
is the weight vector, b is the threshold (w ∈ χ, b ∈ R),
and <∗, ∗> is the dot product. An ε-insensitive loss
function is further defined, where ε is the parameter
representing the band of the tube around the regression
function, as shown in Figure 2. Errors less than ε (inside
the tube) are ignored, whereas errors larger than ε are
depicted using slack variables ξ and ξ∗ (Figure 2). Then,
the optimization objective can be formulated (Smola
and Schölkopf 2004) as:

minimize:
1
2

‖w‖2 + C
l∑

i =1

(ξi + ξ ∗
i ), (1)

Figure 2. The ε-insensitive loss function in support vector
regression.

subject to:

⎧⎪⎨
⎪⎩

(< w, xi > +b) − yi ≤ ε + ξi ,

(yi − < w, xi > +b) ≤ ε + ξ ∗
i ,

ξi , ξ
∗
i ≥ 0.

(2)

where C is a positive constant, representing the trade-
off between the flatness of f and the errors. The min-
imization of Equation 1 is based on the Lagrange
function:

L = 1
2
‖w‖2 + C

l∑
i =1

(ξi + ξ ∗
i )

−
l∑

i =1

αi [ε + ξi + < w, xi > +b − yi ]

−
l∑

i =1

α∗
i [ε + ξ ∗

i + yi − < w, xi > −b]

−
l∑

i =1

(ηi ξi +η∗
i ξ

∗
i ) (3)

where αi , α∗
i , ηi , and η∗

i are Lagrange multipliers. The
partial derivatives of L, with respect to w, b, ξ i, and
ξ i∗, are derived:

∂b L =
l∑

i =1

(α∗
i − αi ) = 0 (4)

∂w L = w −
l∑

i =1

(αi − α∗
i )xi = 0 (5)

∂ξi L = C − αi − ηi = 0 (6)

∂ξ∗
i
L = C − α∗

i − η∗
i = 0 (7)

Substituting these equations into Equation 3, the min-
imization problem becomes:

minimize: −1
2

l∑
i, j =1

(αi − α∗
i )(α j − α∗

j ) < xi , x j >

− ε

l∑
i =1

(αi + α∗
i ) +

l∑
i =1

yi (αi − α∗
i ) (8)
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Simulating Urban Form and Energy Consumption in the Pearl River Delta 1571

subject to:

{∑l
i =1 (αi − α∗

i ) = 0,

0 ≤ αi , α
∗
i ≤ C

(9)

Based on Equation 4, the f(x) can be reformulated as:

f (x) =
l∑

i =1

(αi − α∗
i ) < xi , x > +b (10)

The threshold b is calculated using the Karush–
Kuhn–Tucker conditions:

αi [ε + ξi − yi + < w, xi > +b] = 0 (11)

α∗
i [ε + ξ ∗

i + yi − < w, xi > −b] = 0 (12)

(C − αi )ξi = 0 (13)

(C − α∗
i )ξ ∗

i = 0 (14)

Therefore, the threshold b is obtained as:

b = yi − < w, xi > −ε for αi ∈ (0, C) (15)

b = yi − < w, xi > +ε for α∗
i ∈ (0, C) (16)

where xi represents the data points inside the tube, with
errors that are less than ε. According to the definition
of ε-insensitive loss function, the Lagrange coefficients
of those data points inside the tube are zero. Those
data points with nonzero coefficients are called support
vectors. Furthermore, the optimization process described
earlier can be alternatively accomplished through the
kernel function K (xi , x j ):

f (x) =
l∑

i =1

(αi − α∗
i )K (xi , x) + b (17)

The forms of kernel functions include polynomial, sig-
moidal, and radial-basis functions. Details of the so-
lution can be found in Smola and Schölkopf (2004).
In this study, SVR is implemented through the ma-
chine learning software WEKA (Frank et al. 2010).
The performance of SVR is assessed in terms of predic-
tion accuracy. This can be measured by using the mean
relative error (MRE), a common measurement in many
applications of SVR (Oliveira 2006):

MRE = 1
n

n∑
i =1

∣∣Yi − Y ′
i

∣∣
Yi

(18)

where Yi and Y′
i are the ith observation and its estimate,

respectively.

Logistic CA

In this study, the CA model was developed largely
based on Wu’s (2002) method but was enhanced by
incorporating the urban size projected by SVR based
on a set of economic variables. The CA model was
formulated in a logistic form. Specifically, in a two-
dimensional latticed space of this CA model, the prob-
ability of cellij to be developed was estimated through
a function of development factors (x1, x2, . . . xn), such
as the proximity to town centers or major roads. A lo-
gistic function is used to represent the development
probability:

pg ,ij = exp(z)
1 + exp(z)

= 1
1 + exp(−z)

(19)

where z is the combination score of development factors
of cellij:

z = b0 +
∑

k

bk xk (20)

where b0 is a constant; bk are the coefficients of the
development factors, which can be calibrated using lo-
gistic regression; and xk is the development factors of
cellij.

The probability pg ,ij only addresses the influences
of static physical factors, however. The actual urban
development would also be subject to the influences of
dynamic factors. In the CA model, they are represented
in a way of neighborhood effect, denoted as �t

ij. A simple
way to obtain �t

ij is to calculate the development density
in an n × n neighborhood of cellij at time t:

�t
ij =

∑
n2 con(sij = developed)

n2 − 1
(21)

where con() is a conditional function that returns true
if the state of a cell within the neighborhood is cur-
rently developed. Physical constraints can be incorpo-
rated into the function. For instance, if a cell belongs
to a water body, mountain, or restricted areas, the cell
should be excluded from development. Therefore, the
development probability is revised as follows:

pt
c,ij = pg ,ij�

t
ijcon(sij = suitable) (22)
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1572 Chen et al.

Figure 3. Location of the Pearl River
Delta. (Color figure available online.)

where con() is a conditional function that returns true
if cellij is suitable for development. A nonlinear trans-
formation is imposed to pt

c,ij to promote the probability
of development in cells with higher evaluation scores:

pt
t,ij = pt

c,ij exp
[ − δ

(
1 − pt

c,ij/pt
c,max

)]
(23)

where pt
c,max is the maximum value of pt

c,ij in space at
time t; and δ is called the dispersion parameter, rang-
ing from 1 to 10. During the simulation process, the
number of cells selected for development should meet
the projected amount of urban growth. Therefore, pt

t,ij
is further scaled as:

pt
s,ij = qpt

t,ij

/∑
pt

t,i ′ j ′ (24)

where q is the expected number of cells to be converted,
which can be determined through the iteration number
and the projected urban size. The SVR model was used
to estimate the urban size based on a set of economic
variables.

The selection of cells for development is based on the
Monte Carlo approach. First, the development proba-
bility for each cell in space is updated according to Equa-
tions 22, 23, and 24. Then, a cell is randomly picked and
its scaled development probabilitypt

s,ij is compared with
a random value γ , within 0 to 1. If pt

s,ij is greater than
γ , the cell is converted to urban land use. Otherwise, it
remains unchanged.

Implementation and Results

Study Area

The study area is located in the PRD, Guangdong
Province, China (Figure 3). The five most economically
important cities of this region—namely, Guangzhou,
Shenzhen, Foshan, Dongguan, and Zhongshan—were
selected for this study. In 1978, the economic reform
of China triggered a boom in the regional economy,
as well as rapid urbanization. At present, the PRD has
the highest per capita gross domestic product (GDP)
among the several most developed regions in China
(Shao et al. 2006), but it requires a vast volume of
natural resources, especially fuel resources, to sustain
its economic growth. According to the Guangdong
Statistical Yearbook (Statistics Bureau of Guangdong
Province 2009), the energy consumption of the entire
province reached 226.72 million tons of the standard
coal equivalent (SCE) in 2008. The energy consump-
tion of the industrial sector accounted for 65.68 percent
of overall energy use, more than 70 percent of which
was generated from coal and oil. As the most urban-
ized and economically developed region in Guangdong
Province, the PRD accounted for 67 and 85 percent
of the total provincial consumption of coal and oil,
respectively (Shao et al. 2006).

Data

The primary source of the energy consumption data
used in this study is the statistical yearbooks published

D
ow

nl
oa

de
d 

by
 [

Su
n 

Y
at

-S
en

 U
ni

ve
rs

ity
] 

at
 1

6:
59

 2
2 

O
ct

ob
er

 2
01

3 



Simulating Urban Form and Energy Consumption in the Pearl River Delta 1573

by the city governments. Most of these data are not
available before 2005. As a result, we only collected
the energy consumption data of the study area from
2005 to 2008. The total amounts of energy consumption
of Guangzhou, Dongguan, and Zhongshan were found
in the statistical yearbooks, but those of Foshan and
Shenzhen were not available. The energy consumptions
of these two cities were estimated using the following
equation:

E = eGDP,i Vi + eLiving,i Pi /1, 000 (25)

where eGDP,i is the energy intensity (ton of SCE/104

yuan) of city i, and Vi represents the amount of GDP
(104 yuan) of city i; eLiving,i is per capita energy con-
sumption for living (kilograms of SCE) of city i, and Pi

is the city’s population. This method is different from
Dhakal’s (2009) approach, which uses statistics beyond
the city level (e.g., provincial energy intensity), to es-
timate energy consumptions of China’s cities. This is
a top-down approach, which disaggregates the energy
consumption at a higher level to a lower level. In this
study, because the energy intensity data were available
at the city scale, no disaggregation was needed when
estimating energy consumption. Table 1 shows the en-
ergy intensity (energy consumption per unit GDP) for
all five cities from 2005 to 2008, as retrieved from statis-
tical yearbooks of these cities. To validate Equation 25,
we used it to estimate the energy consumption of Dong-
guan, Guangzhou, and Zhongshan and compared the
results with the values recorded in the statistical year-
books of these three cities (Table 1). For the three cities,
the differences between the estimates and recorded val-

Table 2. Percentage of gross products of industry and
energy consumption for the five selected cities in 2008

Percentage of
gross products

of industry (%)

Percentage of energy
consumption for industrial

production (%)

Dongguan 46.3 56.1
Foshan 60.8 53.3
Guangzhou 34.1 54.7
Shenzhen 43.8 55.2
Zhongshan 54.9 42.0

Sources: Statistics Bureau of Dongguan Municipality (2009); Statistics
Bureau of Foshan Municipality (2009); Statistics Bureau of Guangdong
Province (2009); Statistics Bureau of Guangzhou Municipality (2009);
Statistics Bureau of Shenzhen Municipality (2009); Statistics Bureau of
Zhongshan Municipality (2009).

ues are insignificant, which validates the use of Equation
25 to estimate the energy consumption of Foshan and
Shenzhen.

For Dongguan, Foshan, Shenzhen, and Zhongshan,
industrial production has been the most important eco-
nomic sector, accounting for 40 to 60 percent of the
cities’ GDPs (Table 2). Guangzhou is an exception,
with a percentage of 34.1 percent. Although industrial
production was generally the largest source of energy
consumption in the five cities, the subsectors of industry
can be quite different in terms of energy usage. To clas-
sify the subsectors based on their energy consumption,
we calculated the energy intensity for each of the thirty-
nine subsectors identified in China’s statistical system
for the five cities. Due to the data limitations, we had to
assume that the energy intensity of a certain subsector
was the same for all five cities and use the provincial

Table 1. Energy consumption per unit GDP and total energy consumption of the five selected cities during 2005 to 2008
(estimated total energy consumption is shown in parentheses)

2005 2006 2007 2008

Energy consumption per unit GDP (tons of SCE/104 yuan)
Dongguan 0.86 0.82 0.78 0.74
Foshan 0.95 0.91 0.87 0.80
Guangzhou 0.78 0.75 0.71 0.68
Shenzhen 0.59 0.58 0.56 0.54
Zhongshan 0.78 0.74 0.70 0.67

Total energy consumption (106 tons of SCE)
Dongguan 18.86 (18.76) 21.39 (21.38) 23.94 (23.92) 25.90 (25.88)
Foshan — (22.64) — (25.94) — (29.53) — (31.32)
Guangzhou 40.29 (40.20) 44.13 (44.15) 48.66 (48.49) 52.25 (51.93)
Shenzhen — (29.21) — (33.24) — (37.11) — (40.43)
Zhongshan 6.88 (6.86) 7.61 (7.62) 8.35 (8.33) 8.85 (8.84)

Note: GDP = gross domestic product; SCE = standard coal equivalent.
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1574 Chen et al.

Table 3. The fraction of gross products of each industrial
sector in terms of energy intensity in 2008 (%)

Intensive energy
consumption

industries

Medium energy
consumption

industries

Low energy
consumption

industries

Dongguan 23.98 29.73 46.28
Foshan 37.76 26.52 35.72
Guangzhou 15.28 41.17 43.55
Shenzhen 9.10 16.98 73.92
Zhongshan 15.50 40.31 44.20

data to conduct the calculation. Based on the energy
intensity values, we classify the subsectors into three
groups: intensive energy-consuming sector (average =
2.35 tons of SCE/104 yuan), medium energy-consuming
sector (average = 0.68 tons of SCE/104 yuan), and
low energy-consuming sector (average = 0.32 tons of
SCE/104 yuan). Table 3 lists the proportions of the in-
dustrial products of these subsectors in 2008 for each
city. The intensive energy-consuming sector shares the
largest proportion in Foshan (37.76 percent), whereas
the low energy-consuming sector is the highest in Shen-
zhen (73.92 percent). We also collected other statistical
data (Table 4), particularly the data on the gross prod-
ucts and energy consumption of tertiary industry of the
five selected cities, as the tertiary industry became more
important in PRD’s economy.

In this study, we used multitemporal satellite images
to generate urban land use data. These satellite data in-
clude four pairs of Landsat TM5 images (path 122, row
44; path 121, row 44) acquired in 2005, 2006, 2007,
and 2008, with a resolution of 30 m. These images
were georeferenced to the universal transverse mer-

Table 4. All statistical data used in this study

Data Period

Total energy consumption at city level 2005–2008
Population of each city 2000–2008
Gross domestic products of each city 2000–2008
Gross products of industry at city level 2000–2008
Gross products of each industrial sector at both

provincial and city level
2005–2008

Energy consumption of each industrial sector at
provincial level

2005–2008

Gross products of tertiary industry at city level 2000–2008

Sources: Statistics Bureau of Dongguan Municipality (2009); Statistics
Bureau of Foshan Municipality (2009); Statistics Bureau of Guangdong
Province (2009); Statistics Bureau of Guangzhou Municipality (2009);
Statistics Bureau of Shenzhen Municipality (2009); Statistics Bureau of
Zhongshan Municipality (2009).

cator projection with a registration error of less than
15 m. The land use classification for these images was
carried out using the object-oriented classification soft-
ware, Definiens Developer 7.0 (Definiens Developer 7.0
2003). First, similar pixels were aggregated into ob-
jects via the image segmentation approach. Samples
(objects) were then manually collected for each land
use category (e.g., urban area, farmland, forest, water,
fish pond, and bare soil). A set of features was selected
through the feature selection tool to maximize the dis-
tance between land use classes. Finally, all objects were
classified using the nearest neighbor method. The land
use classes of farmland, fish pond, and bare soil were
merged into nonurban area, regarded as candidates for
land conversion during the urban growth simulation,
whereas the forests and water areas were considered as
restricted areas in which development was not permit-
ted.

We used the method proposed by Pontius and Mil-
lones (2011), instead of the frequently used kappa in-
dexes, to assess the classification accuracy. This method
divides the disagreements between classification and
reference into quantity disagreement and allocation
disagreement. Therefore, this method is more helpful
than kappa indexes just using a single ratio to represent
the classification accuracy. The quantity disagreement
and allocation disagreement can be calculated using the
following equations (Pontius and Millones 2011):

pij =
(

nij∑J
j =1 nij

) (
Ni

Nij

)
(26)

Q = 1
2

J∑
g =1

qg = 1
2

J∑
g =1

∣∣∣∣∣∣
(

J∑
i =1

pi g

)
−

⎛
⎝ J∑

j =1

pg j

⎞
⎠

∣∣∣∣∣∣
(27)

A = 1
2

J∑
g =1

ag = 1
2

J∑
g =1

2 min

[(
J∑

i =1

pi g

)

− pgg,

⎛
⎝ J∑

j =1

pgj

⎞
⎠ − pgg

⎤
⎦ (28)

D = Q + A (29)

where J is the number of land use classes; nij is the
number of the samples classified as i and referenced
as j; Ni is the population of land use class i; pij is the
estimated proportion of the study area classified as i and
referenced as j; qg and ag are the quantity disagreement
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Simulating Urban Form and Energy Consumption in the Pearl River Delta 1575

Table 5. Confusion matrices of the classification of urban areas (2005–2008)

2005 2006 2007 2008

Reference Urban Nonurban Urban Nonurban Urban Nonurban Urban Nonurban

Classification Urban 397 73 447 71 487 80 520 102
Nonurban 142 2,229 158 2,155 182 2,082 149 2,060

and the allocation disagreement of land use class g;
Q and A are the overall quantity disagreement and the
allocation disagreement, respectively; and D is the total
disagreement.

We calculated the quantity and allocation dis-
agreements for the binary land use data (urban and
nonurban) from 2005 to 2008. Each year, we conducted
random sampling and collected the samples’ reference
information. Table 5 shows the confusion matrices for
each year’s binary land use data, and Figure 4 demon-
strates the quantity and allocation disagreements.
The majority of disagreement comes from allocation
disagreement, ranging from 5 to 8 percent, whereas the
quantity disagreement is only 1 to 3 percent. The total
disagreements are less than 10 percent for all four years,
indicating that the classification is fairly accurate every
year.

In addition, we used classification consistency to
assess the classification accuracy over time. This was
carried out according to a three-step procedure: (1)
detecting the consecutive land use change from 2005 to
2008 using the binary land use data (i.e., 2005 → 2006
→ 2007 → 2008), which should result in sixteen pos-
sible changes; (2) identifying the cells that witnessed
invalid (false) changes; not all of these sixteen possible
changes are valid in reality (e.g., the conversion from
urban to nonurban is almost impossible); and (3) calcu-
lating the respective proportions of cells with valid and
invalid changes, denoted as pv and piv, respectively. The
value of pv is calculated by overlaying four years of bi-
nary land use data and counting cells with valid changes
(Figure 4B). As a result, we found 11,948,717 cells with
valid changes and 970,139 cells with invalid changes.
Thus, the value of pv is [11,948,717/(11,948,717
+ 970,139) = 0.9249]. If persistent nonurban cells
(i.e., no changes witnessed during the study period)
are excluded from the calculation, the value of pv

becomes [3,733,283/(3,733,283 + 970,139) = 0.7937].
Generally, the value of pv should be proportionate to
the classification accuracy over time. The results of
pv suggest that the classification of urban area is fairly
accurate to be used in subsequent urban analysis.

After the land use classification, landscape metrics
were used to quantify the urban land use patterns.
We selected four landscape metrics based on previous
literature (Dietzel et al. 2005; Seto and Fragkias 2005),
including total urban class area (UCA), the number
of urban patches (NP), mean perimeter-area ratio
(PARA), and mean Euclidean nearest-neighbor dis-
tance (ENN). For NP, a patch means an individual ho-
mogenous region of urban land use (Herold, Couclelis,
and Clarke 2005). ENN is the average distance between
a patch and its nearest neighbor. PARA is the mean
value of the perimeter-area ratio of all urban patches.

These metrics were selected to reveal the character-
istics of urban forms from three aspects: size, fragmen-
tation, and regularity. UCA can be used to reflect the
urban areal change. The combination of NP and ENN
can be used to measure the fragmentation of land use
pattern. Given the same amount of urban areas, higher
values of NP and ENN MN indicate a more fragmented
or dispersed pattern. PARA represents the regularity of
a pattern. A higher value of PARA suggests a more
oddly shaped pattern.

As the inputs to the CA model, a series of spatial vari-
ables were generated using geographic information sys-
tem (GIS) functions. The atlas of Guangdong Province
for 2009 was used to obtain the distribution of city cen-
ters and town centers and transportation networks of
the study area. These layers were further used to create
spatial variables, such as the distance to city centers,
the distance to towns, the distance to major express-
ways, the distance to major roads, and the distance to
railways. The slope of the study area was produced using
the digital elevation model (DEM). All of the spatial
data have a resolution of 30 m.

Implementing SVR Models to Predict Energy
Consumption and Urban Size

The energy consumption levels of the five selected
cities were predicted based on SVR using two types
of factors. The first type is the economic variables, in-
cluding tertiary industrial output value (Vtert) and the
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1576 Chen et al.

Figure 4. The classification accuracy
of the land use data. (A) Quantity and
allocation disagreements. (B) Consis-
tency of the land use classification over
time. (Color figure available online.)

gross products of three industrial sectors: the inten-
sive energy-consuming sector (M1), medium energy-
consuming sector (M2), and low energy-consuming sec-
tor (M3). The second type includes those factors that
reflect the characteristics of urban forms, represented by
landscape metrics (UCA, NP, ENN, and PARA). Gen-
erally, landscape metrics are correlated, which leads to
multicollinearity when using a conventional regression
approach. Thanks to the principle of minimizing struc-
tural risk, however, SVR is not sensitive to intercorre-

lated variables (Gani, Taleb, and Limam 2010). Thus,
the metrics can be used as input variables to predict
energy consumption. The computation of these metrics
was accomplished through the spatial analysis software
FRAGSTATS (McGarigal et al. 2002).

The training of SVR was implemented in WEKA, a
machine learning software package (Frank et al. 2010).
Data were normalized and randomly split into two
halves for training and testing, respectively. Table 6
shows the statistical description of these two data sets.
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Simulating Urban Form and Energy Consumption in the Pearl River Delta 1577

Table 6. Statistical description of the training and testing
data sets (means and standard deviations)

Training (10
instances)

Testing (10
instances)

M SD M SD

E (106 tons of SCE) 27.26 17.92 28.39 8.19
M1 (108 yuan) 279.16 139.57 393.27 140.88
M2 (108 yuan) 544.84 322.91 602.31 264.51
M3 (108 yuan) 1,335.72 1,031.49 754.59 199.05
Vtert (108 yuan) 2,307.68 1,779.15 1,604.45 906.41
P (104 persons) 643.02 345.02 699.93 145.61
UCA (km2) 526.89 252.08 779.45 91.51
NP 220 79.56 277.70 53.49
ENN (m) 270.56 93.95 289.48 127.95
PARA 399.925 99.54 325.73 52.48

Note: SCE = standard coal equivalent; UCA = urban class area; NP =
number of urban patches; ENN = Euclidean nearest neighbor differences;
PARA = mean perimeter-area ratio.

The polynomial function and the radial-basis function
were used to make a comparison in terms of mean rel-
ative error. The results are shown in Table 7. It can be
seen that the polynomial function (exponent = 1) has
the highest modeling accuracy, with the mean relative
errors of 8.93 percent for training and 12.63 percent for
testing, respectively.

Another SVR model was employed to project urban
size. The variables used for this projection were selected
based on previous studies. Deng et al. (2008) concluded
that GDP was the most important driver of China’s ur-
ban expansion. Han et al. (2009) regarded variables
of population, GDP, and urbanization level to model
the urban areal change of Shanghai. Deng et al. (2008)
found that industrialization and the development of the
tertiary sector were also crucial factors affecting the ur-
ban growth in China. In this study, we take into account

Table 7. The errors of the support vector regression
(SVR)-based models for predicting energy consumption and

urban size

Training Testing
(%) (%)

SVR-based energy consumption model (106 tons of SCE)
Polynomial function (exponent = 1) 8.93 12.63
Polynomial function (exponent = 2) 11.90 15.42
Radial-basis function 33.70 53.13

SVR-based urban size model (km2)
Polynomial function (exponent = 1) 12.87 16.02
Polynomial function (exponent = 2) 22.75 35.44
Radial-basis function 69.52 78.71

three categories of socioeconomic variables to predict
urban size: population (P), gross products of three indus-
trial sectors (M1, M2, and M3), and the tertiary sector
(Vtert). Configuration of this SVR model remains the
same as the previous one: Data were normalized and
split into two halves for training and testing, respec-
tively. The performances of the polynomial and radial-
basis functions were compared and the results are shown
in Table 7. The respective mean relative errors of the
polynomial function (exponent = 1) for training and
testing are 12.87 and 16.02 percent, which are the low-
est compared with the other two models. This model
was used to estimate urban size during the simulation of
PRD’s urban growth from 2005 to 2008 and to project
urban size in the scenario simulations.

Calibration of Logistic CA for Urban
Growth Simulation

The logistic CA was calibrated using land use data in
the years of 2005 and 2008. The input variables include
distance to city centers (x1), distance to towns (x2), dis-
tance to expressway (x3), distance to major roads (x4),
distance to railways (x5), and slope (x6). It is inappro-
priate to adopt the same set of calibrated parameters for
all cities because the study area is large and complex.
Separate calibrations were implemented for each city to
avoid large simulation errors (Li, Yang, and Liu 2008).
The calibrated parameters are shown in Table 8.

The performance of the logistic CA was tested
through the simulation of realistic urban growth from
2005 to 2008. The number of iterations was set to 300,
and the dispersion parameter δ was manually tuned
using a trial-and-error approach (Table 8). Figures 5A
and 5B are the observed and simulated urban land
use patterns in 2008. The modeling outcome was
validated at both local (pixel-by-pixel) and global
(landscape metrics) axes. Pontius et al. (2007) proposed

Table 8. The calibration results of the logistic cellular
automata

Dongguan Foshan Guangzhou Shenzhen Zhongshan

b1 –0.877 –3.853 –2.234 –0.615 –0.662
b2 –1.417 –3.01 –4.645 –3.591 –3.520
b3 –0.001 –0.825 –3.660 –0.228 –0.211
b4 –1.518 –2.923 –6.686 –2.755 –1.872
b5 –0.469 0.509 –3.284 1.037 –0.966
b6 –14.243 –5.725 –11.899 –12.873 –2.862
b0 1.196 1.960 3.204 0.960 2.011
δ 2.0 7.0 3.0 3.0 1.0

D
ow

nl
oa

de
d 

by
 [

Su
n 

Y
at

-S
en

 U
ni

ve
rs

ity
] 

at
 1

6:
59

 2
2 

O
ct

ob
er

 2
01

3 



1578 Chen et al.

Figure 5. (A) and (B) The actual and simulated urban land use patterns, respectively. (C) Overlap of the actual and simulated land use. (D)
Quantity of the three grouped cells. (Color figure available online.)

a pixel-by-pixel approach called figure of merit to assess
the accuracy of a simulation model. Figure of merit is a
ratio, where the numerator is the number of instances
that changed and were correctly predicted as changed,
and the denominator is the total number of instances
excluding persistently nonchanging instances. Based
on this ratio, Pontius et al. (2008) conducted a com-
parison of thirteen land change modeling applications,

in which they found that the value of the figure of
merit ranged from 0.01 to 0.59.

We first overlaid the observed land use pattern with
the simulated one to identify four groups of cells:
(1) observed as changed and predicted as changed;
(2) observed as nonchanged and predicted as changed;
(3) observed as changed and predicted as nonchanged;
and (4) persistent nonchanged. Figure 5C shows the
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Simulating Urban Form and Energy Consumption in the Pearl River Delta 1579

distribution of these groups of cells. Then we counted
the respective number of cells for each group (Fig-
ure 5D) and calculated the figure of merit. As a result, we
found 596,118 cells correctly predicted as changed and
1,141,890 cells wrongly predicted, including 511,220
cells observed as nonchanged but predicted as changed
and 630,670 cells observed as changed but predicted as
nonchanged. Therefore, the value of the figure of merit
should be [596,118 / (596,118 + 1,141,890) = 0.3430].
This value is average compared with that of other land
use models (Pontius et al. 2008).

The simulated land use patterns were also validated
at the landscape level. This was carried out by com-
paring the values of landscape metrics (NP, PARA,
and ENN) between the observed and simulated pat-
terns. A similarity index was used to measure the overall
accuracy:

A = 1 − 1
n

n∑
i =1

∣∣ai,s − ai,o
∣∣

ai,o
(30)

where n is the number of metrics and ai,s and ai,o are
values of metrics derived from the simulated pattern
and the observed pattern, respectively.

Table 9 lists the values of landscape metrics for the
observed and simulated patterns. Table 9 also shows
the results of the similarity index A. The values of A
are highest in the simulations of Dongguan and Zhong-
shan and lowest in the simulation of Guangzhou, as
Guangzhou has a much larger territory than the other
four cities. Nevertheless, the average value of A is over
70 percent for all five cities. This indicates that the
model is accurate enough for further applications.

Evaluating the Impacts Under Different
Development Strategies

Table 1 demonstrates that even though energy use in-
tensity is declining annually for all five cities, their total
energy consumption levels are growing at a much higher
rate. For example, the energy use intensity of Foshan
reduced by 15.8 percent from 2005 to 2008; however,
its total energy consumption increased by 38.3 percent
during this period. This indicates that the improve-
ment in energy efficiency does not offset the increase
in overall energy consumption. This result is similar
to those of Güneralp and Seto (2012), who examined
the energy consumption of building construction and
operation in the PRD and discovered that the im-
provements in energy efficiency lagged behind the

Table 9. Validating the simulated patterns using landscape
metrics

NP PARA ENN

Actual land use patterns
Dongguan 184 395.5731 196.5591
Foshan 329 267.5776 204.7529
Guangzhou 369 328.8492 435.4597
Shenzhen 181 425.139 210.2299
Zhongshan 141 303.7895 218.9249

Simulated land use patterns
Dongguan 140 458.6587 252.2834
Foshan 243 327.4381 281.5401
Guangzhou 206 473.4667 418.7878
Shenzhen 152 557.8764 276.1894
Zhongshan 109 380.0164 274.4164

Overall similarity (A)
Dongguan 77.26%
Foshan 71.33%
Guangzhou 69.34%
Shenzhen 73.79%
Zhongshan 75.62%

Note: NP = number of urban patches; PARA = mean perimeter-area ratio;
ENN = Euclidean nearest-neighbor differences.

growth of overall energy demand. Changing the de-
velopment strategy can be another approach to reduce
regional energy consumption. The proposed model can
be used to evaluate the impacts of different development
strategies on energy consumption through scenario
simulations.

In fact, the five cities have announced development
plans to guide their future economic and urban devel-
opment. For example, the Guangzhou Municipal Gov-
ernment (2009) put forward a target of promoting the
tertiary industry in the Outline of Guangzhou Program
of Building a Modern Industrial System (2009–2015),
and the Shenzhen Municipal Government (2009) high-
lighted the importance of high-tech industries in the
approved Overall Plan of Shenzhen for Modern Indus-
try System (2009–2015). Foshan argued the need for
the development of petrochemical industry because it
already has a basis for this industry (see Ministry of
Commerce of the People’s Republic of China 2010).

To explore the potential impacts of the proposed
development strategy on urban growth and energy con-
sumption, four scenarios of development in 2011 were
created based on the development plans already men-
tioned. Scenario 1 assumes that the region will continue
its current development strategy in the future. In Sce-
nario 2, the region will prefer to develop industries in
the intensive energy consuming sector, whereas in Sce-
nario 3 the region will focus on the development of
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1580 Chen et al.

low energy consuming industries. In Scenario 4, higher
priority is given to the development of tertiary industry
instead of manufacturing industries.

The quadratic model was used to extrapolate the
socioeconomic variables (population and the gross
products of both industrial and tertiary sectors) before
the scenario simulations:

y = at2 + bt + c (31)

where y is the predicted socioeconomic variable, and
t is the time variable (year). Estimation of coefficients
a, b, and c was based on statistical data from 2000 to
2008, which are listed in Table 4. Other details of the
four scenarios are specified next.

Scenario 1: Baseline Scenario. In this scenario,
the development strategies for the five cities remain
unchanged. The values of Vtert, M1, M2, and M3 for
each city were forecasted using Equation 31. Urban size
was then projected and the urban land use patterns were
simulated by the calibrated CA model. The simulated
patterns were quantified using the metrics NP, ENN,
and PARA. Energy consumption was then predicted
based on the SVR model.

Scenario 2: Preferring Industries in the Intensive
Energy Consuming Sector. Among the five cities,
Foshan has the highest proportion of industries in the
intensive energy consuming sector (37.76 percent; see
Table 3). Such a situation will continue if the devel-
opment plan of Foshan is followed. In this scenario,
the development strategy of Foshan was applied to the
simulation of the other four cities, using Foshan’s CA
model parameters. Specifically, the values of Vtert, M1,
M2, and M3 for Foshan in 2011 were forecasted using
Equation 31, and the respective proportions of M1, M2,
and M3 can be derived, denoted as pm1, FS, pm2, FS, and
pm3, FS. For the other four cities, the values of Vtert, M1,
M2, and M3 in 2011 were extrapolated, and the gen-
erated M1, M2, and M3 were rescaled based on pm1, FS,
pm2, FS, and pm3, FS. The urban land use patterns were
then simulated based on the calibrated CA model, con-
strained by the projected urban size. The simulated pat-
terns were quantified using the metrics NP, ENN, and
PARA. Finally, the energy consumption of each city
was predicted using the SVR-based energy prediction
model.

Scenario 3: Preferring Industries in the Low
Energy Consuming Sector. In contrast with Scenario
2, Scenario 3 assumes that the majority of industrial out-

puts exclusively came from the low energy-consuming
sector in 2011. Recently, Shenzhen had approximately
74 percent of industrial outputs from industries in the
low energy consuming sector (Table 3). The develop-
ment plan of Shenzhen emphasizes the development of
such industries in the future. In this scenario, the val-
ues of Vtert, M1, M2, and M3 for Shenzhen in 2011 were
first forecasted using Equation 31. Then the respective
proportions of M1, M2, and M3 can be derived, denoted
as pm1, SZ, pm2, SZ, and pm3, SZ. For the other four cities,
the values of Vtert, M1, M2, and M3 were extrapolated,
and the generated M1, M2, and M3 were rescaled based
on pm1, SZ, pm2, SZ, and pm3, SZ. The rest of the proce-
dure is similar to Scenario 2, except that Shenzhen’s
CA model parameters were implemented for the entire
region.

Scenario 4: Preferring Industries in the Tertiary
Sector. The study area has recently witnessed a rapid
growth in the tertiary industry. For instance, the pro-
portion of tertiary industry was as high as 59.0 per-
cent in Guangzhou in 2008. The development plan of
Guangzhou indicates that the city will prefer to grow
the tertiary industry in its future development. Thus,
this scenario assumes that Guangzhou’s development
strategy will be implemented in the other four cities.
Specifically, the values of gross domestic output Vtert,
M1, M2, and M3 for Guangzhou in 2011 were forecasted
using Equation 31. Meanwhile, the respective propor-
tions of the outputs of the industrial sector and tertiary
sector were determined, denoted as pm, GZ and ptert, GZ.
For the other four cities, the values of the gross domes-
tic output were predicted beforehand, and the values of
Vtert, M1, M2, and M3 were then disaggregated based on
ptert, GZ and pm, GZ. The rest of the procedure is similar
to that of Scenario 2, except that each city’s original
CA model parameters were replaced by the ones for
Guangzhou.

Figure 6 shows the predicted values of Vtert, M1, M2,
and M3 in each scenario. Table 10 lists the projected
urban size of each city for these scenarios. The total
urban size of the five cities is 4,564.18 km2 in the base-
line scenario, in which the region follows the current
development strategy. The total urban size increases to
5,131.67 km2 if the strategy of developing industries
in the intensive energy-consuming sector is adopted
(Scenario 2). On the contrary, the total urban size
significantly decreases to 4,080.87 km2 if the region’s
major industrial outputs come from the low energy-
consuming sector (Scenario 3). If the tertiary industry
becomes the dominant sector of the regional economy
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Simulating Urban Form and Energy Consumption in the Pearl River Delta 1581

Figure 6. Predicted values of Vtert, M1, M2, and M3 in the four scenarios. (Color figure available online.)

Table 10. The predicted urban size and energy
consumption in the four development scenarios

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Projected urban size (km2)
Dongguan 979.26 1058.99 929.17 930.47
Foshan 1,202.05 1,202.05 897.62 907.83
Guangzhou 1,211.49 1,461.57 1,139.26 1,211.49
Shenzhen 774.38 950.25 774.38 876.47
Zhongshan 397.00 458.82 350.44 359.43
Total 4,564.18 5,131.67 4,080.87 4,285.69

Predicted energy consumption (106 tons of SCE)
Dongguan 34.58 38.16 33.07 32.97
Foshan 49.08 49.08 42.67 42.65
Guangzhou 71.65 81.92 69.14 71.65
Shenzhen 53.46 62.02 53.46 54.39
Zhongshan 13.62 16.16 13.27 13.27
Total 222.39 247.35 211.60 214.94

Note: SCE = standard coal equivalent.

(Scenario 4), the total urban size (4,285.69 km2) be-
comes less than that of the baseline scenario but much
higher than that of Scenario 3. This result is unex-
pected because the total land demand for promoting
the tertiary industry should be lower than that of pro-
moting industrial production. A possible reason is that
the recent boom in real estate development requires a
large amount of land for the construction of residential
buildings and various kinds of villas.

Figure 7 shows the simulated urban land use patterns
for these scenarios. The simulation can help visualize
the potential impacts of different development strate-
gies. For example, Scenario 2 (Figure 7B) will cause a
large quantity of land to be converted to urban use and,
in particular, the nonurban area is almost depleted in
Shenzhen. Scenario 3 (Figure 7C) is more reasonable
because it still shows sufficient space for the city to grow
in the future. All these patterns are quantified using the
metrics NP, ENN, and PARA. The results, along with
the predicted values of Vtert, M1, M2, and M3 were used
to estimate energy consumption for each city.

D
ow

nl
oa

de
d 

by
 [

Su
n 

Y
at

-S
en

 U
ni

ve
rs

ity
] 

at
 1

6:
59

 2
2 

O
ct

ob
er

 2
01

3 



1582 Chen et al.

Figure 7. Simulated urban land use patterns in the four scenarios. (Color figure available online.)

Table 10 also lists the predicted energy consump-
tion of the five cities in 2011. In the baseline scenario,
energy consumption is 222.39 million tons of SCE
(Scenario 1). The highest energy consumption (247.35
million tons of SCE) is shown in Scenario 2, which as-
sumes that the region prefers to develop industries in the
intensive energy-consuming sector, whereas the lowest
energy consumption (211.60 million tons of SCE) is
observed in Scenario 3, in which the region strongly
promotes industries in the low energy-consuming sec-
tor. In addition, compared with the result of the baseline

scenario, a moderate reduction of both land and energy
consumption can be seen in Scenario 4 (developing
tertiary industry).

Further comparison of the results reveals an inter-
esting finding. The relative differences of projected
urban size are larger than those for predicted energy
consumption among the four scenarios. For instance,
the comparison between Scenarios 1 and 2 shows that
the percentage increase in urban size (12.43 percent) is
slightly higher than that of energy consumption (11.22
percent). Such differences are more obvious in the
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comparison between Scenarios 1 and 3; the percentage
reduction in urban size is 10.59 percent, and the per-
centage reduction in energy consumption is only 4.85
percent. A similar result is observed in the comparison
between Scenarios 1 and 4, in which the respective
percentage changes are 6.10 percent and 3.35 percent.

Such results indicate that compared with energy
consumption, urban size is more sensitive to the
adjusted economic structure, perhaps because the land
requirements vary among industries in each sector. Al-
though we never know the exact land requirements of
each industry, evidence suggests that industries in the
high energy-consuming sector usually occupy a larger
amount of land. For example, the sector of oil refinery,
coking, and nuclear fuel processing has the highest
energy intensity (3.46 tons of SCE/104 yuan) across all
industries, and a representative enterprise in this sector,
the SINOPEC Guangzhou Company (http://english.
sinopec.com/about sinopec/subsidiaries/refineries petro
chemicals/20080326/3043.shtml), covers a vast area of
3.7 km2 in eastern Guangzhou. By contrast, enterprises
in the low energy-consuming sector require much less
land resources on average. For instance, the Shenzhen
High-Tech Industrial Park, with an area of 11.5 km2,
includes hundreds of enterprises.

In summary, the scenario simulations presented
represent four types of development strategies. The
strategy of developing energy-intensive industries re-
quires massive inputs of both energy and land. Hence,
it is not suitable for cities like Shenzhen, where devel-
opable land has already become scarce (see Figure 7B).
Meanwhile, the transportation demand might also
increase because of the rapidly growing urban size. The
PRD is expected to rely more on road-based transporta-
tion to meet the expanding demand for mobility, which
can aggravate the energy problem and air pollution in
this region (Yang et al. 2011). On the contrary, the de-
mands for land and energy are much lower if the strategy
of developing industries in the low energy consuming
sector is adopted. Therefore, given the same size of the
economy, increasing the share of industries in the low
energy-consuming sector is more helpful in balancing
economic development and energy and land consump-
tion. Promoting the tertiary industry is another alter-
native for future development. Generally, a shift from
primary and secondary industry to tertiary industry is
happening in industrialized regions. The analysis in this
study reveals that the strategy of promoting tertiary in-
dustry can, to some extent, reduce both land and energy
consumption.

Conclusion

This study presents a model that integrates CA and
SVR to evaluate the impacts of different development
strategies on urban growth and energy consumption.
The proposed model was tested in the PRD, which
is a rapidly developing region in China. The logistic
CA model was used to simulate the urban forms of
the study area, constrained by the projected urban size.
The landscape metrics were then adopted to quantify
the simulated urban forms. Finally, the SVR model
was employed to predict energy consumption using
landscape metrics and other socioeconomic variables.

Scenario simulations were carried out based on the
respective development plans of Guangzhou, Foshan,
and Shenzhen to examine the effects of the modified
economic structure on urban growth and energy con-
sumption. Compared with the baseline scenario (Sce-
nario 1), Scenario 2 (the development strategy of Fos-
han is implemented) will largely increase the demands
for land resources and energy. In contrast, the devel-
opment strategy of Shenzhen requires far less land and
energy resources for future development. Promoting ter-
tiary industry (Guangzhou’s strategy), to some extent,
can also reduce the demands for both land and energy.

An apparent limitation of this study is that the em-
pirical land use data only involve urban and nonurban
types due to the limited resolution of Landsat images
(30 m). Land use data with more specific types (e.g., res-
idential, commercial, and industrial uses) can be help-
ful to reveal the link between land use structure and
energy consumption. Such land use data are also use-
ful for analyzing the geographical placement of energy
demand and providing implications for energy manage-
ment and policymaking. In our future research, remote
sensing images with higher resolution (e.g., IKONOS
or QuickBird images) will be considered as data sources
to map detailed urban land uses, although much time
and funding will be needed to conduct an analysis at a
regional scale using these images.

As a rapidly developing region and the world’s man-
ufacturing base, PRD sustains its economic growth at
the cost of a large volume of fossil fuel use with rela-
tively low efficiency. In addition to prediction of future
energy demand, it is important to assess the impacts of
energy policies on carbon emission. This field has been
regarded by Horner, Zhao, and Chapin (2011) as one of
the fertile research areas in synthesizing GIScience and
energy issues. Therefore, in future studies, we will apply
the recent scenario simulations of energy consumption
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to the evaluation of their respective carbon emission
volumes. Energy structure data are necessary for this
kind of research, but such data are not available for all
cities in the PRD. Additional efforts must be made to
improve data availability.
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